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Advective transport in the percolation backbone in two dimensions
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We show that, in the case of advective transport on the percolation backbone, the relevant structure below
the correlation length is an ensemble of tortuous paths, rather than the classical links-nodes-blobs system.
These paths are embedded in the few largest blobs that dominate the structure of the backbone. We find
numerically that the mean particle displacement differs from the prediction given by classical finite-size scaling
arguments. We also show that because of the complex velocity distribution between the paths, the mean
first-passage time of the particles cannot be inferred directly from the mean particle displacement.
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Numerous environmental issues, such as the storag
nuclear wastes in underground repositories, require the
derstanding and modeling of chemical transport in geolog
formations. This problem has been addressed experimen
in different porous and fractured media@1,2# and theoreti-
cally by a broad range of frameworks@3,4#. The structure of
the percolation cluster at criticality is a useful model f
numerous porous and fractured media@5,6#. While diffusive
processes on the percolating cluster have been treate
many studies@7#, fewer studies have considered advect
processes@8–11#. In the pure advective case, the mean v
locity and the dispersivity on percolating clusters have b
estimated in systems of increasing sizes using finite-
scaling arguments explicitly@8# or implicitly @9–11# to infer
the temporal evolution of the particles within a given syste

We compute directly the mean particle velocity and t
dispersivity of advected ‘‘particles’’~representing chemica
mass! within percolation systems, and find, below the cor
lation length, different predictions from the one given
finite-size scaling arguments. We show that both the class
finite-size scaling arguments and consideration of the cla
cal structure of the backbone made up of links, nodes,
blobs @6#, do not lead to correct estimates of pure advect
transport. Between two consecutive nodes, the backb
structure is dominated by its largest blob. Within this blo
transport is influenced by the flow path tortuosity and by
multifractal nature of the velocity field@12#. Moreover, the
complexity of the velocity field entails a nontrivial relatio
between the mean first-passage time of the particles and
mean particle position.

We recall briefly how the mean particle velocity is dete
mined classically by finite-size scaling arguments on a p
fect self-similar geometry@8# or on the percolating cluster a
threshold@9#. The average timêT& spent by a particle in a
system of sizeL is equal to the volume of the system divide
by the boundary outflowQ. For the backbone at thresho
and for unit potential gradient boundary conditions,

^T&;LdB1m̃21, ~1!

wheredB and m̃ are, respectively, the fractal dimension
the backbone and the characteristic exponent of the pe
ability dependence with scale. Now,dB51.643260.0008
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and m̃50.982660.0008@13#, so that^T&;L1.625860.0016. A
consistent numerical result^T&;L1.6460.02 has been found
on a dipole geometry@11#. The mean flow velocitŷ U&
scales asL/^T&, i.e., ^U&;L2c with c5dB1m̃22.

Based on finite-size scaling arguments@6,8#, for spatial
scaleŝ R& lower thanL, the mean velocity should generaliz
to the formd^R&/dt;L2cg(^R&/L), where^R& is the aver-
age position of the tracer andt is the time. Assuming tha
velocity is insensitive toL for tracer distances smaller thanL,
g(x);x2c @8#, finite-size scaling arguments give by integr
tion,

^R&;t1/(11c). ~2!

We derive the time dependence of the mean position
the tracer from the links-blobs structure of the backbone
threshold. At threshold the backbone consists of blobs
series@6# ~red links, i.e., singly connected links, are consi
ered as blobs of unit mass!. Using the argument of@8# on a
blob, the average time spent by a particle in a blob is p
portional to the mass of the blobs divided by the flow within
the system of sizeL, that iss/L2m̃11. The number of blobs
of masss in a system of sizeL is ns(L);Ldrs2(11dr /dB),
wheredr is the exponent describing how the number of r
links increases withL @14#. The average time spent betwee
two red links separated byR scales as the sum of the time
spent in the blobs separating the two red links. Asns(L)
;s21.4564 @14#, the sum of the times is dominated by th
largest time spent in the largest blob. For the same rea
the mass of the backbone between two points separatedR
is dominated by the mass of the largest blob, so that the m
of the largest blob scales asRdB and its size scales asR, a
result that we will use below. We thus deduce that the av
age time spent between two red links separated byR should
be

^t&;RdBL m̃21, ~3!

which reduces to Eq.~1! whenR5L.
In order to analyze the evolution of the spatial and te

poral characteristics of the particle plumes, we have set u
numerical experiment on a classical percolating syste
made up of unit-length elements whose position and orie
©2001 The American Physical Society05-1
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tion are chosen randomly in a system of sizeL. The con-
nected cluster is extracted from the system and the fl
equation is solved on this structure using Kirchoff’s law
the intersections and Darcy’s law in the segments~Fig. 1!. A
detailed description of the used algorithm is given in@15#.
The system boundary conditions are a unit potential d
between the two horizontal edges of the system and im
vious vertical edges. To simulate transport, we used a s
dard particle-tracking algorithm, based on flux-weighted d
tributions of particles at intersections@16#. Particles are
introduced along one edge of the system; the probability
particle entering a segment at this edge is equal to the
through this segment divided by the total flow through t
system. We used 33105 particles for each realization an
sampled from 100 to 1000 different realizations for ea
computation. We checked systematically that the numbe
particles did not influence the results in a range of 103–105

particles. Numerical simulations give^T&;L1.6160.02 for L in
the range 5–150, which is consistent with the theoret
predictions given by Eq.~1!.

The mean̂ R& of the particle positions at a fixed timet
and the mean̂ t& of the first-passage time distribution at
fixed positionR were computed directly.̂R& was taken in
the time range in which none of the particles leaves the s
tem; this generally occurs when^R& reaches about half ofL.
From intensive numerical simulations for system sizes ra
ing from 20<L<200 ~some of which are shown on Fig. 2!,
we find that

^t&

^T&
;S R

L D t

with t50.9760.01, ~4!

^R&
L

5S t

^T& D
r

with r50.8360.01, ~5!

FIG. 1. Flow in the backbone, generated at threshold for wh
L575 whereL is the size of the system. The largest blob lyin
between the upper edge and the first red link is cut by the sys
boundary and occupies most of the system. The gray scale is
portional to the flow values with the maximal flow value for the r
links represented in black and the minimal values about five ord
less than the maximal value represented in light gray.
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where^T& is given by Eq.~1!. Results~4! and~5! differ from
the predictions given by finite-scaling arguments~2! and by
use of the links-blobs-nodes structure of the backbone~3!,
respectively. MoreoverrÞ1/t, showing that time and spatia
averages are not directly related.

We explain first why the estimated and computed me
first-passage times~3! and ~4! differ. The average timed^t&
needed for a particle to cross a slice of widthdR depends
only on the system geometry. As pointed out by@8#, this
means, especially, thatd^t& does not depend on the particu
lar shape of the particle velocity distribution. Rather,d^t&
scales as the mass of the backbone, i.e., the number of p
N(R,L) times the average path tortuosityd^ l &/dR, divided
by the boundary outflowQ @8#,

d^t&
dR

;
N~R,L !

Q

d^ l &
dR

. ~6!

Intensive numerical simulations forR in the range 1–200 and
t in the range 102–106 demonstrate that, independent oft,

^ l &;Rd with d51.1660.01, ~7!

N~R!;Rn with n520.19, ~8!

leading tot5d1n. The decrease ofN with R ~8! entails a
speed up of the particles slightly larger than the slow do
due to tortuosity, resulting in a sublinear evolution of t
mean first-passage time^t& with R.

The decrease ofN with R ~8! derives from the structure o
the backbone. Because the size of the largest blob in a
tem of sizeL scales asL, it is likely to be cut by the sides o
the system~Fig. 1!. In fact our simulations show that th
position of the first red link encountered by a particle, defi
ing also the extension of the first blob, is at an average
tance ofL/3 from the system edge. In this truncated blob, t
number of paths decreases from the system edge where
statistically maximal to the first red link where it is equal
one. At scales lower thanL/3, the geometrical structure re
evant to advective transport is a set of tortuous paths of
creasing numberN given by Eq.~8!, while ^t& behaves ac-
cording to Eq.~4!. At scales larger thanL/3, when particles

h

m
ro-

rs

FIG. 2. Normalized mean of the particle positions„^R&(t)/L… at
normalized fixed time (t/^T&) ~top points and solid line! and nor-
malized spatial position (R/L) against the normalized average tim
at which this position is crossed^t&/^T& ~bottom points and dashe
line!. The solid and dashed lines are the best linear fits to the d
5-2
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have statistically crossed the first red link, particles se
series of links and blobs and̂t& behaves according to Eq
~3!. The scaling analysis yields only the first regime.

The estimated and computed mean particle positions~2!
and ~5! differ also because of the truncation of the larg
blob. Finite-size scaling arguments implicitly assume that
largest blob encountered by a particle on a characteristic
tanceR is smaller thanR. In this framework, the anomalou
slow advection comes from the increasing probability for
particle to encounter larger blobs and hence smaller vel
ties. On the contrary, we have seen that the first blob enco
tered by the particle has a size of the order of the system s
The anomalous transport is thus due to the structure of
first truncated blob rather than to the succession of blob
varying sizes.

We explain finally why time and spatial averages are
related directly by looking at the particle velocity distrib
tion Pp . The comparison of the particle velocity distribu
tions at fixed timesPp(v,t) ~gray curves in Fig. 3! and at the
corresponding mean particle positionsPp„v,^R&(t)… ~black
curves in Fig. 3! shows that, at fixed timest, particles have
smaller velocities than at the corresponding mean posit
^R&(t). Particles experience a large range of velocities alo
their path through the system and their probability to be
vected by a small velocity increases with time. This tende
is confirmed by the computed mean particle velocities.
evolving times, the mean particle velocity decreases,^v(t)&
;t20.04, whereas for the corresponding mean positions

FIG. 3. Comparison of different velocity distributions. Partic
velocity distributions at fixed timePp(v,t) ~gray curves! and at the
corresponding mean particle positionPp„v,^R&(t)… ~black curves!
in a system of sizeL5120. The velocity distribution represented b
the solid and dashed lines are taken for^R&(t) equal to 5 and 30,
respectively.
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increases asŠv„^R&(t)…‹;t0.16. These behaviors explain th
absence of a simple relation between the temporal and sp
characteristics of the particle plume,^t&(R), and^R&(t), re-
spectively. It is not only the first momentŠv„^R&(t)…‹ of the
velocity distributionPp„v,^R&(t)… that changes witĥR&(t)
but more generally the whole distributionPp„v,^R&(t)… as
shown by the difference of the black solid and dashed line
Fig. 3. The velocity distribution is thus a nonstationary m
tifractal, with the nonstationarity coming from the spati
variations of the distribution. A unified characterization
the velocity distribution and of its consequences on the s
tial and temporal variations of the moments of the parti
plume are currently investigated and would be presente
another report.

For systems above the percolation threshold, we veri
numerically that, below the correlation length,^R&(t) is de-
scribed by Eq.~5! and not by Eq.~2!. Below the correlation
length j, a particle is likely to be launched into the large
blob and to travel within this largest blob on a tortuous pa
to reach the first node. Above the correlation length,
found that the advective transport is normal, leading to^R&
;t.

To conclude, in the temporal analysis, the mean time
the first-passage time distribution depends only on the s
tem geometry and is conditioned by the largest blob. In
spatial analysis, the mean position of the particles is mo
slowed down by the tortuosity, the velocity being almo
constant. When comparing the spatial and temporal
proaches, the average time^t& to reach the positionR is
larger than the time to reach the mean position^R& @^R&(t)
lies aboveR(^t&) in Fig. 2# because, forR(^t&) all particles
have experienced slow velocity zones, increasing their tra
time, whereas, for̂ R&(t), particles may still be trapped in
the slow velocity zones.

Finally we compare our results to classical transport th
ries by computing the spatial and temporal standard de
tions of particle locations,sR ands t , respectively. We find
that sR /sL;(t/^T&)0.73 with sL;L1.1 and s t /sT
;(R/L)0.55 with sT;L1.39. For sR , this numerical result
differs from sR;L1/(11c), predicted by finite-size scaling
arguments@8#. For s t , the value of the exponent 0.55 an
the above results established on^t& show that the first-
passage time mean and standard deviation behave almo
for the normal dispersion case, for which^t&;R and s t
;R0.5.
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